On arithmetic families of filtered phi-modules and crystalline representations

نویسنده

  • Gerd Faltings
چکیده

We consider stacks of filtered φ-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrising integral data and determine the image of this morphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES

The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...

متن کامل

Construction of Some Families of 2-dimensional Crystalline Representations

— We construct explicitly some analytic families of étale (φ,Γ)-modules, which give rise to analytic families of 2-dimensional crystalline representations. As an application of our constructions, we verify some conjectures of Breuil on the reduction modulo p of those representations, and extend some results (of Deligne, Edixhoven, Fontaine and Serre) on the representations arising from modular ...

متن کامل

CONSTRUCTION OF SOME FAMILIES OF 2-DIMENSIONAL CRYSTALLINE REPRESENTATIONS by

— We construct explicitly some analytic families of étale (φ,Γ)-modules, which give rise to analytic families of 2-dimensional crystalline representations. As an application of our constructions, we verify some conjectures of Breuil on the reduction modulo p of those representations, and extend some results (of Deligne, Edixhoven, Fontaine and Serre) on the representations arising from modular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011